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ABSTRACT Noncommunicable diseases (NCDs) are the leading cause of morbidity and mortality world-
wide. Cardiovascular diseases (CVDs) and diabetes are the most prevalent NCDs, causing 1.9 and 1.5
million deaths yearly. Individuals diagnosed with type 1 diabetes (T1D) are at high risk of developing
CVDs. Machine learning (ML) models have provided outstanding results in different domains, including
healthcare, allowing to obtain models with high predictive performance. The aim of this study was to develop
an interpretable data-driven approach to predict the 10-year CVD risk for T1D older individuals, aiming to
provide both reasonable predictive performance and the identification of risk factors associated with CVDs.
Data from T1D individuals at the Steno Diabetes Center Copenhagen were used. Different ML-based models
were considered, includingKNN, decision tree, random forest, andmultilayer perceptron (MLP). To enhance
the predictive performance of ML models, the conditional tabular generative adversarial network (CTGAN)
was used to create synthetic data and increase the size of the training data. Several filter and wrapper feature
selection (FS) techniques were considered for identifying the most relevant features involved in CVD risk
and enhancing the performance of the ML-based models used. To gain interpretability on predictive models,
we used the post-hoc methods: SHAP and accumulated local effects. The experimental results showed a
great performance of FS and ML-based models for predicting CVD risk. In particular, the MLP obtained
the best results, with a mean absolute error of 0.0088 and mean relative absolute error of 0.0817. Regarding
risk factors, age, Hba1c, and albuminuria were identified as crucial in CVD risk prediction, which is in line
with recent clinical evidence. Our study contributes to identifying CVD risk and associated risk factors in a
data-driven manner, helping to make early interventions and adequate treatments to prevent CVDs.

INDEX TERMS Cardiovascular risk prediction, type 1 diabetes, machine learning, interpretable methods,
feature selection, generative adversarial networks, accumulated local effects, post-hoc interpretability, ctgan

I. INTRODUCTION

NONCOMMUNICABLE diseases (NCDs) have become
a global health and economic issue in modern society.

Recent reports from the World Health Organization identi-
fied NCDs as the leading cause of disability and morbidity
worldwide [1]. Cardiovascular diseases (CVDs) and diabetes

are among the most prevalent NCDs, causing 1.9 and 1.5
million deaths per year, respectively [2]. According to the
International Diabetes Federation [3] approximately 700 mil-
lion individuals will develop diabetes by 2045 [4]. Previous
studies have shown that the risk of developing cardiovascular
events is higher in prediabetic cohorts than in cohorts of
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healthy individuals [5]. Furthermore, epidemiological studies
have shown that the risk of developing CVD is higher in
individuals with type 1 diabetes (T1D) [6], [7]. Although
T1D is frequently diagnosed in children and youth, many
cases have been reported in adulthood [8]. People with NCDs
significantly increase the cost and demand for healthcare
services owing to multiple hospitalizations, adverse events,
and frequent visits to primary and specialized care [4]. Early
identification of CVD cases and effective interventions are
crucial for reducing both health and economic burden [1], [9].

Risk calculators have supported public health stakeholders
in the identification of individuals at high risk of CVD, fos-
tering early clinical interventions and reducing acute events
and associated mortality risk [10]. Several clinical guide-
lines recommend the use of risk models as the first step
in decision-making, primary prevention and the design of
risk-reducing strategies [10], [11]. Over the last few years,
various CVD risk calculators have been developed, including
the Framingham risk score [12], the systematic coronary risk
evaluation [13], the Reynolds risk score [14], the PROCAM
calculator [15] among others [16], [17]. Regarding CVD risk
prediction models for diabetic cohorts, three approaches have
been extensively employed [18]: (i) considering diabetes as
a CVD risk factor and treating diabetic patients as high-risk
patients; (ii) applying risk models developed using cohorts of
healthy individuals to diabetic populations; and (ii) develop-
ing diabetes-specific risk prediction models. Of the 45 CVD
risk prediction models identified for patients with diabetes
[19], 33 corresponded to the second approach, and only 12
were developed using data from cohorts diagnosed with dia-
betes [20]. Additionally, the first and second approaches are
not robust because the pathogenesis of CVD in diabetic pa-
tients is multifactorial and presents significant heterogeneity
owing to the presence of other comorbidities [21]. While the
high prevalence of CVD among people with type 2 diabetes
(T2D) has been widely studied and recognized over the past
several decades, the link between T1D and CVD has been less
studied.

Several CVD risk models have been developed for T2D
patients, but a few risk calculators have been created and
validated using data from T1D individuals [22]. In the liter-
ature, some studies have proposed risk engines focused on
T1D, such as the Swedish T1D risk score (SWT1RS) [23],
the Scottish T1D risk score (SCT1RE) [24] and the Danish
Steno T1 Risk Engine (ST1RE) [22]. The SWT1RS con-
sidered eight features: diabetes mellitus (DM) duration, age
at onset of T1D, log ratio of total cholesterol, high-density
lipoprotein (HDL), glycosylated hemoglobin (HbA1c), sys-
tolic blood pressure (SBP), smoking, macroalbuminuria, and
if the patient had previous CVD. The SCT1RS used nine
features: age, sex, HbA1c, EGFR, HDL, DM duration, smok-
ing status, antihypertensive treatment, and statin therapy. The
ST1RE considered age, sex, diabetes duration, SBP, low-
density lipoprotein (LDL), HbA1c, albuminuria, estimated
glomerular filtration rate (EGFR), and lifestyle habits such
as smoking and exercise. In this study, ST1RE was used to

obtain the CVD risk for diabetic cohorts, since it considers
different types of albuminuria, lifestyle and clinical features.
In the clinical setting, several studies have explored the use

of machine learning (ML) models in a range of applications
such as disease prediction, identification of risk factors, pre-
diction of adverse events among others [25]–[28]. ML field
has not been only limited to the development of predictive
models, and have been successfully used to identify disease
risk factors [29]. In critical domains such as healthcare, un-
derstanding how models reach predictions is of paramount
importance for the implementation and adoption ofML-based
models in clinical practice [30]. The goal is not only to
create models with high predictive performance but also to
obtain transparent and interpretable models [31]. Recently,
methods that provide post-hoc explanations of model pre-
dictions, such as Shapley additive explanations (SHAP) [32]
and accumulated local effects (ALE) [33], have received
considerable attention [30], [31]. Despite the great benefits of
ML, in several applications and domains, the generalization
and performance of models are limited by the number of
samples in the datasets. To address this, several resampling
approaches have been proposed for generating synthetic data
and increasing the amount of data used for model training.
Among them, generative adversarial networks (GANs) have
provided remarkable results for generating high-quality data
in computer vision [34]. In this study, the GAN-based model
named conditional tabular GAN (CTGAN) [35], which has
shown excellent performance in previous studies [36], [37],
has been used to create synthetic tabular data that help to
enhance predictive results.
In this study, we developed an interpretable data-driven

approach to predict the 10-year CVD risk in T1D older indi-
viduals, aiming to provide both reasonable predictive perfor-
mance and interpretability in the identification of risk factors
associated with CVDs. To conduct this study, we used data
collected from patients diagnosed with T1D at the Steno Di-
abetes Center Copenhagen [22]. Different ML-based models
were considered, including the K-nearest neighbors (KNN),
decision tree (DT), random forest (RF), and multilayer per-
ceptron (MLP). To enhance the predictive performance of
these models, the oversampling model CTGAN was used to
create synthetic data and combine them with real patient data.
Several filter and wrapper feature selection (FS) techniques
were considered for identifying most relevant features in-
volved in the development of CVD, and thus enhancing the
performance of ML models. To identify the most relevant
features and gain interpretability onML-basedmodels trained
for CVD risk prediction, we used the post-hoc methods:
SHAP [32] and ALE [33]. To the best of our knowledge,
this paper is one of the first that explores GAN-based models
for tabular data augmentation in combination with filter and
wrapper FS methods for enhancing CVD risk prediction in
T1D older individuals.
The rest of the paper is organized as follows. Section II

describes the dataset and preprocessing stage. Section III
presents the methods employed in this work. Section IV
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shows the experimental setup, the results achieved by ML
models for predicting CVD risk, and the analysis of CVD risk
factors identified through FS and post-hoc methods. Finally,
Section V and Section VI presents discussion and conclu-
sions, respectively.

II. DATASET DESCRIPTION AND PREPROCESSING
This section presents the dataset used and the preprocessing
stage. In this study, we employed data collected from 1,000
Danish adults diagnosed with T1D and treated at the Steno
Diabetes Center Copenhagen [22]. Patients with previous
CVD events were excluded, resulting in a dataset of 677
individuals. A total of 10 features were considered, including
age, sex, smoking, exercise, DM duration (in years), SBP
(in mmHg), LDL (in mmol/l), Hba1c (in mmol/mol), EGFR
(in ml/min/1.72m2), and albuminuria. All features were con-
tinuous except for the binary features of sex, smoking, and
exercise, and the categorical feature albuminuria. Three cat-
egories of albuminuria, differing in the urinary albumin-
to-creatinine ratio, were available: normoalbuminuria (<30
mg/g), microalbuminuria (30–299 mg/g), and macroalbumin-
uria (≥ 300 mg/g). The one-hot encoding [38] was used
for transforming the original feature (albuminuria) into three
new binary features named: normoalbuminuria, microalbu-
minuria, and macroalbuminuria. Smoking was coded as ’0’
(absence) and ’1’ (presence). Regularly exercise was coded as
‘1’ and ’0’ otherwise. Regarding sex, men and women were
coded as ’0’ and ’1’, respectively. None of the features in the
dataset contained outliers or missing data.

In Figure 1, histograms and bar plots were used to visualize
the distribution of continuous and binary features. It was
observed that patients were adults with a mean age of 45
years. Lifestyle information showed that most patients did not
exercise regularly and had a high smoking rate. Regarding
the types of albuminuria, most of individuals presented nor-
moalbuminuria, and a few patients had microalbuminuria and
macroalbuminuria. ST1RE [22] was used as risk calculator
to obtain the 10-year CVD risk in T1D patients. Contrary
to traditional CVD risk calculators that only considered age,
sex, SBP, LDL-cholesterol, EGFR, ST1RE included infor-
mation on DM duration, HbA1c, albuminuria, and patients’
lifestyle (smoking and physical activity). The resulting CVD
risk ranged between [0, 1], with 0 and 1 denoting a low and
high risk, respectively. In the current work, the 10-year CVD
risk was considered as the target variable and used to train
predictive ML-based models.

III. METHODS
In this subsection, we first introduced the ML models used to
predict the CVD risk in T1D individuals. Then, we detailed
the data augmentation methods and discuss how they are
applied to the current study to enhance the models’ perfor-
mance for predicting CVD risk. Finally, we presented the
FS and post-hoc interpretability methods to identify the most
relevant CVD risk features and providemodel interpretability.

A schematic of the interpretable and data-driven workflow
proposed in this study is shown in Figure 2.

A. NOTATION
Let an input dataset X = {x(i)}Ni=1 consisting of N sam-
ples, with the i-th sample represented by a vector x(i) =

[x(i)1 , . . . , x(i)D ] ∈ RD, where D is the number of features.
The corresponding target (10-year CVD risk by ST1RE) is
identified by y = [y1, . . . , yN ]. In this work, we estimated the
CVD risk (defined as ŷi) using several ML-based models. We
split the input datasetX into train subsetXtrain and test subset
Xtest , with 70% and 30% of the samples, respectively. The
training subset was only used for training themodels, whereas
the test subset for evaluating the trainedmodels. Five different
partitions of train and test subsets were considered to evaluate
the generalization capability of predictive models. The mean
absolute error (MAE) and the mean relative absolute error
(MRAE) were considered as figures of merit, defined as fol-
lows: MAE = 1

Nt

∑Nt
i=1 |yi − ŷi|, MRAE =

∑Nt
i=1 |yi − ŷi|/ŷi,

being Nt the size of the test subset, xi the i-th test sample, and
yi and ŷi the true CVD risk and the predicted risk, respectively.

B. ML-BASED MODELS TO PREDICT CVD RISK
In this study, due to the flexibility and high performance of
ML-based models compared to traditional statistical tech-
niques, the KNN, DT, RF, and MLP models were used to
predict the 10-year CVD risk for T1D adults.
KNN is a nonparametric and nonlinear model that uses

dissimilarity measures to make predictions [39]. Unlike para-
metric models, KNN does not make any assumptions re-
garding the underlying data distribution, making it highly
flexible and suitable for a wide range of applications [40].
Formally, given a samplexi belonging to the test subset, KNN
computes the similarity measure between xi and all samples
in the training subset [41]. These measures are then sorted
to find smaller values and thus find the corresponding K-
nearest neighbors. The prediction of xi is the mean of the
outputs of its K nearest neighbors. In the algorithm, both the
distance measure and the number of neighbors K are crucial
for achieving reasonable predictive results.
DT is a nonparametric and nonlinear model that divides

complex decisions into simpler ones and organizes them hier-
archically with a tree-like structure [42]. The feature space is
iteratively partitioned into regions containing homogeneous
sets of samples. Each partition (split) in the feature space is
represented as a new node in a tree-like structure [42]. DTs
are very popular in the clinical field because of their inter-
pretability, which provides visualization of decision-making
processes [43]. During the tuning phase, several hyperparam-
eters, such as the splitting criterion, the minimum number of
samples for splitting, and the maximum depth of the tree,
need to be assigned. This is particularly relevant for this
algorithm because DT tends to cause overfitting when the tree
becomes overly complex, posing a challenge for achieving
generalization [42].
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FIGURE 1: Histograms and bar plots associated with features of the dataset collected by the Steno Diabetes Center Copenhagen.

RF is a nonparametric ensemble model that combines
multiple DTs to make predictions [44]. Initially, from the
training subset, RF employs a bagging sampling method to
generate M training sets, each containing a similar num-
ber of samples [45]. Subsequently, using these M train-
ing subsets, RF constructs an ensemble of M DTs, defined
as {pr1(x), pr2(x), . . . , prM (x)}, obtaining M predictions
{ŷ1 = pr1(x), ŷ2 = pr2(x), . . . , ŷM = prM (x)}. Finally,
the prediction is determined by averaging the results of M
DTs [45]. The hyperparameters typically explored for RF
include the number of estimators (trees) and the number of
features considered at each split.

MLP is a feed-forward Artificial Neural Network (ANN)
consisting of an input layer, one or more hidden layers, and
an output layer, which are interconnected by processing units
called neurons [46]. Each neuron within a layer is connected
to the other neurons in successive layers through weighted
connections. During training, the weights are randomly ini-
tialized, and the objective is to learn the optimal weight
values that minimize the error between the estimated output
of MLP and the real target. This is achieved using the back-
propagation algorithm combined with stochastic gradient de-
scent [47], which adjusts the weights of the ANN in a super-
vised manner to minimize the error [48]. Furthermore, MLP
has several hyperparameters that need to be carefully tuned to
optimize its performance. In this study, we explored different
numbers of neurons in hidden layers, activation functions, the
optimizer among others.

C. OVERSAMPLING METHODS

In the literature, a variety of techniques have been proposed
to increase the size of training subsets and improve predic-
tive results [49]. Resampling methods that create synthetic
samples for minority classes [50] have received consider-
able attention because of their computational efficiency and
versatility [51]. However, in the clinical setting, datasets are
generally characterized by a high degree of heterogeneity,
and present mixed-type data with numerical and categorical
features [35]. Most oversampling techniques are designed to
work with numerical features and do not perform adequately
when mixed-type data are used. Recently, generative adver-
sarial networks (GANs) [52] have gained great popularity
due to their impressive results in generating synthetic data,
especially in computer vision applications [53]. GANs are
generative models that train two networks simultaneously
through an adversarial process: a generator G and discrim-
inator D. While G aims to produce synthetic samples, D
strives to differentiate between real and synthetic samples.
Despite the benefits of GANs in multiple applications [54],
these models present several challenges for generating tabular
and mixed-type data. Recently, a novel GAN-based model
named CTGAN [35] has been proposed to address these
limitations. CTGAN uses a mode-specific normalization to
solve the problem of non-Gaussian distributions in numerical
variables, and a conditional generator to address imbalanced
categorical features [35]. Wasserstein divergence and the
weight clipping with a gradient penalty have also been used
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FIGURE 2: Workflow of the interpretable and data-driven approach for CVD risk prediction.

to enhance synthetic data [35]. In a previous study [36], the
authors assessed the performance of GAN-based models to
create synthetic data with numerical and categorical features.
CTGAN exhibited the best performance to create synthetic
data by maintaining intrinsic characteristics from the original
data, leading to improvements in subsequent predictive tasks.

In this study, two data augmentation strategies were used:
over-per and over-level. In over-per, synthetic samples were
generated using a fixed percentage of all samples from the
training subsetXtrain. The percentage of samples was selected
from several values within the range [1, 20], being 5% which
provided an improvement in CVD-risk prediction. In over-
level, the number of synthetic samples was based on different
CVD risk levels. First, we categorized the 10-year CVD risk
(provided by ST1RE) into three levels: low, intermediate and
high. These levels were identified using the risk stratification
guidelines from the National Institute for Health and Care
Excellence [55] and by setting specific risk cut-off values,
thus distinguishing: (i) low-risk patients (CVD risk<0.1), (ii)
moderate-risk patients (CVD risk in the range [0.1, 0.2)); and
(iii) high-risk patients (CVD risk≥ 0.2). We split the individ-
uals in Xtrain into three groups (CVD risk levels), identifying
the one with the most samples (moderate-risk patients). Then,
the number of new samples for the low-risk and high-risk
groups was created by taking the number of the moderate-risk
group as reference.

D. FEATURE SELECTION METHODS
FS methods choose a subset of features and aim to achieve
several objectives [56]–[58]: (i) overcoming the curse of di-
mensionality; (ii) reducing the computational cost for training
models; (iii) improving generalization capacity and predictive
performance in subsequent tasks; and (iv) enhancing inter-
pretability. FS methods are classified into three categories:
filter, embedded and wrapper methods [56]. Since no single
FS method can guarantee optimal results in terms of both
predictive performance and stability of selection, this study
explored several FS methods. Specifically, a variety of filter
and wrapper FS techniques are considered for: (i) selecting
the most relevant features that help to improve model perfor-
mance in predicting CVD; and (ii) identifying those features
that play a significant role in the development of CVD.
Filter methods select features that present a strong relation-

ship with the target and work independently of any predictive
model [59]. They evaluate features based on specific scoring
criteria, such as statistical tests, mutual information (MI),
or dissimilarity measures, and subsequently select a subset
of features with the highest scores, discarding those deemed
irrelevant [59]. In this study, we employed the minimal redun-
dancy and maximal relevance (mRMR) [60] and Relief [61]
methods as filter-based FS methods. These methods were
chosen because of their computational efficiency and their
ability to identify relevant features that contribute to enhanc-
ing performance in subsequent predictive tasks.
mRMR method performs FS by minimizing the re-
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dundancy among features and maximizing the relevance
of the features to the target [60]. To compute redun-
dancy and relevance, mRMR uses MI, which quantifies
the amount of information that one random variable en-
compasses about another [60]. Formally, given two random
variables X and Y , the MI is computed as follows [62]:∑

x∈X
∑

y∈Y ρ(x, y)log( ρ(x,y)
ρ(x)ρ(y) ), where ρ(x, y) denotes the

joint probability density function (PDF), ρ(x), and ρ(y) rep-
resent the PDFs of X and Y , respectively. Relief measures
the relevance of features by uncovering the dependencies
between the features and target [61]. The algorithm is as
follows. First, a sample is randomly selected, and then the
feature vectors of the nearest samples from both the same
class and different classes are identified. This process allows
to rank the importance of each feature individually, similar to
a univariate approaches, while consider dependencies among
other features. Relief has been extensively used because of its
simplicity and effectiveness, particularly in high-dimensional
feature spaces [61].

Wrapper methods iteratively train prediction models by
searching for the best feature subset [57]. They use a predic-
tive model to assess the effectiveness of feature subsets using
a search strategy, making them computationally complex and
time consuming [59]. Despite these drawbacks, they benefit
from their interaction with predictive algorithms to iden-
tify the best performing feature subsets. This study consid-
ers the following wrapper methods: permutation importance
(PI) [63] and particle swarm optimization (PSO) [64]. The
PI was originally proposed for the RF algorithm [65], and
further research was developed to create a model-agnostic FS
method [66]. It quantifies feature importance by measuring
the change in a specific figure of merit (e.g., accuracy for clas-
sification, MAE for regression) when a feature is excluded
as an input to obtain model predictions [63]. The importance
is assessed through the feature importance difference (FID),
which is calculated as the difference between a reference
score and a corrupted score [67]. The reference score is
derived using the original features, whereas the corrupted
score is the average after shuffling features a fixed number
of times [67]. A feature is considered significant if shuffling
significantly affects the score (high FID value), indicating its
strong impact on model predictions. MRAE was chosen to
evaluate the impact of permuting features on the predictive
performance of ML-based models [67].

PSO is a metaheuristic optimization algorithm inspired by
the collective behavior of swarms in nature, such as bird
flocking [64]. In the context of optimization problems, a
swarm is conceptualized as a group of particles, where each
particle represents a potential solution [68]. Similar to how a
flock of birds collectively searches for the best landing spot,
PSO iteratively seeks an optimal solution by simulating the
movement of particles within a search space. Regarding FS,
each particle in PSO represents a potential solution, charac-
terized by a multidimensional position vector and a multidi-
mensional velocity vector [69]. In the former, dimensionality

is equal to the number of features, and each dimension rep-
resents the probability of a feature to be selected. The veloc-
ity of the particle is updated after each iteration, depending
on the particle’s best position and the global best position,
which are determined using a fitness function [69]. PSO finds
the optimal regions of complex search spaces through the
interaction of individuals in a population [70]. In contrast to
other optimization algorithms, PSO presents global search
capability, high computational efficiency, fast convergence
rate, minimal parameter tuning requirements, and avoids local
minima [71].

E. POST-HOC INTERPRETABILITY METHODS FOR
IDENTIFYING CVD RISK FACTORS
In the clinical setting, obtaining models with high predictive
performance is not sufficient for physicians and clinical re-
searchers, and it is crucial to understand why models provide
a particular outcome. Owing to ever-increasing advances in
ML for healthcare, it is paramount to provide interpretabil-
ity to trained models [30]. Interpretability is defined as the
process of generating human-understandable explanations of
outcomes provided by computational models [43]. The inter-
pretability in supervised approaches aims to explain how pre-
dictions are achieved for any given input [72]. Several meth-
ods have been developed for model interpretability, being
post-hoc and model-agnostic approaches the most used [73].
These techniques can be categorized into global and local
approaches [74]. Global approaches describe the overall be-
havior of a model, whereas local approaches aim to explain
how the models reached a prediction for a specific input. In
this study, two post-hoc and global methods were considered:
SHAP [32] and ALE [33].
SHAP is a post-hoc interpretability method that identifies

the features that significantly impact on the model’s pre-
dictions [32]. SHAP uses Shapley values from coalitional
game theory, combining optimal credit allocation and local
explanations [32]. Each feature value of a data sample is con-
ceptualized as a player in a game, where the prediction of the
sample minus the average prediction for the dataset is consid-
ered the payout [32]. Shapley values ensure fair distribution
of this payout among players based on their contribution to
the output, thus explaining the average marginal contribution
of a feature value across all possible coalitions [74]. Summary
plots are commonly used to visualize the Shapley values
and feature importance [32]. These plots combine the feature
importance for a prediction task, with each point representing
the Shapley value given for a feature in a particular sample.
The features are organized in decreasing order of importance
for model prediction on the vertical axis, the horizontal axis
shows the Shapley value, and a color bar is used to show the
value of the feature for each sample. In the following section,
we provide an example of a SHAP plot using the results from
the trained ML models.
ALE is a post-hoc interpretability method proposed as an

alternative to partial dependence plots (PDPs) [33]. Although
both PDPs and ALE aim to visualize how features impact on
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themodel’s predictions [33], [74], PDPs present twomain dis-
advantages. PDPs are computationally expensive, and when
features present high correlations, they are unreliable because
their development involves including artificial data samples
that are not representative of the original data [75]. By con-
trast, ALE computes the differences in predictions averaged
over the conditional distribution of each feature [33]. This ap-
proach avoids the need for artificial data samples and provides
more reliable interpretations, particularly in the presence of
correlated features [33]. ALE allows the visualization of the
effect of feature interactions and provides insights into how
the model’s predictions change with variations in feature
values [33]. For example, ALE can be used to analyze the
effect of the interaction between two features by averaging
the changes in model’s predictions.

IV. EXPERIMENTAL RESULTS
In this section, we analyze the effectiveness of combining
different FS methods and ML-based models for predicting
CVD risk in T1D adults. We first present the experimental
setup, and then an extended comparison of the predictive
performance of ML-based models by using all features and
those selected by FS methods. Finally, we identified the risk
factors involved in the development of CVD using FS and
post-hoc interpretability methods.

A. EXPERIMENTAL SETUP
In this study, ML models DT, KNN, MLP, and RF are used to
predict 10-year CVD risk in individuals diagnosed with T1D.
Although DT and KNN were used in a previous work [76],
the overall results were not the highest because of the scarcity
of samples in the dataset. We extend and evaluate the ef-
fectiveness of tabular data augmentation models based on
GANs for generating synthetic mixed-type data that leads to
improved predictive performance, thus achieving better CVD
risk prediction. The source code for reproducibility of results
is available in github.com/ai4healthurjc/cvd-risk-fs-ctgan.

To find the best hyperparameters of ML models, k-fold
cross-validation (CV) [77] was performed, with k = 5 and the
MRAE as the figure of merit. The following hyperparameters
were explored: for DT, the split criterion (Gini, entropy),
the maximum depth in the range [2, 12] and the minimum
samples per split in the range [2, 20]; for KNN, K values
between [1, 15]; for RF, the number of samples per split
between [2, 6] and the number of estimators in the range
[10, 40]; and for MLP, the number of neurons, and the weight
initialization approach (random, uniform, Glorot) were ex-
amined. Specifically, we selected an architecture composed
of mn inputs (the same size as the input features, D), a single
hidden layer with h neurons, and a single neuron in the output
layer. Different numbers of neurons in the hidden layers were
explored, including {2, 4, 6, 8, 10, 12}. ReLu was considered
as the activation function for neurons in the input and hidden
layers and the sigmoid activation function for the output layer.
Adam optimization was considered, and the mean squared
error was used as the loss function.

In this study, we analyzed and compared the impact of dif-
ferent feature subsets (FES) of the original dataset provided
by the StenoDiabetes Center Copenhagen [22] to identify 10-
year CVD risk. Several subsets were selected using filter FS
(mRMR, Relief) and wrapper FS (PI, PSO) methods, which
are described as follows.
1) FES1 contains all features of the dataset;
2) FES2 considers demographics (age and sex) and

lifestyle features (exercise and smoking);
3) FES3 contains selected features by the PI method;
4) FES4 contains selected features by the PSO;
5) FES5 contains selected features by mRMR;
6) FES6 contains selected features by Relief;

B. PREDICTING CVD RISK FOR T1D PATIENTS
Table 1 shows the predictive results (measured by MAE and
MRAE) using different FES, ML models and oversampling
strategies. As stated, both FES1 and FES2 are independent of
FSmethods, with the former considering all features, whereas
the latter only selects demographic and lifestyle features (age,
sex, smoking, and exercise). For FES1, MLP achieved the
best predictive performance, obtaining the highest values for
MAE and MRAE, with 0.0112±0.0011 and 0.1072±0.0056,
respectively. Most ML-based models trained using real and
synthetic samples generated by CTGAN (considering over-
per and over-level) achieved a slight improvement in MAE
andMRAE. The lowest predictive results were obtained using
FES2, demonstrating that the clinical features play a crucial
role in CVD prediction.

Regarding FES3 and FES4, it can be observed that the
selection of features by the wrapper FS methods improved
the predictive results compared to FES1 (all features). As
argued, the features selected in these approaches depend
directly on the ML algorithm. Overall, the features selected
using PSO (FES4) achieved the best MAE andMRAE values,
with 0.0088±0.0006 and 0.0817±0.0129, respectively, out-
performing the results of the different FES. The feature sub-
set obtained by PI (FES3) also provided reasonable results,
performing the same as when using the entire set of features.
Regarding the filter methods (FES5 and FES6), the features
selected by mRMR and Relief led to obtain low MAE and
MRAE values. In Figure 3, we visually compare the CVD
risk obtained with ST1RE versus the estimated CVD risk
obtained using ML models. Note that models trained with
FES1 and FES4 were considered. As shown, MLP was the
model most effective, providing less error in the predicted risk
for each patient. DT and KNNworked correctly for CVD risk
< 0.2, but they presented difficulties otherwise. RF and MLP
obtained similar results, and although the errors between real
and estimated CVD risks were small in RF, these errors were
less marked in MLP.

C. IDENTIFYING CVD RISK FACTORS USING FEATURE
SELECTION AND INTERPRETABILITY METHODS
In this subsection, we showed the most informative features
selected by FSmethods, which led to the identification of risk
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TABLE 1: MAE and MRAE obtained by combining different FS methods and ML models. The results without oversampling
(WO) and considering over-per and over-level are shown. The best results for MAE and MRAE are marked in bold.

Model MAE MRAE
WO over-per over-level WO over-per over-level

F
E
S1

DT 0.0361±0.0034 0.0369±0.0031 0.0367±0.0036 0.2354±0.0130 0.2368±0.0072 0.2244±0.0100
KNN 0.0378±0.0028 0.0349±0.0038 0.0358±0.0032 0.2662±0.0104 0.2541±0.0268 0.2435±0.0207
MLP 0.0112±0.0011 0.0095±0.0010 0.0107±0.0010 0.1072±0.0056 0.0923±0.0035 0.1037±0.0029
RF 0.0250±0.0018 0.0238±0.0020 0.0246±0.0019 0.1701±0.0113 0.1639±0.0108 0.1625±0.0106

F
E
S2

DT 0.0449±0.0055 0.0445±0.0022 0.0475±0.0044 0.2993±0.0293 0.2910±0.0182 0.3097±0.0167
KNN 0.0446±0.0029 0.0439±0.0019 0.0437±0.0038 0.3175±0.0226 0.3106±0.0132 0.3013±0.0123
MLP 0.0428±0.0020 0.0409±0.0029 0.0431±0.0030 0.3350±0.0168 0.3117±0.0169 0.3380±0.0089
RF 0.0412±0.0027 0.0405±0.0019 0.0424±0.0028 0.2768±0.0235 0.2746±0.0141 0.2788±0.0197

F
E
S3

DT 0.0331±0.0026 0.0341±0.0024 0.0328±0.0027 0.2197±0.0107 0.2175±0.0042 0.2080±0.0071
KNN 0.0349±0.0019 0.0328±0.0025 0.0323±0.0003 0.2363±0.0125 0.2246±0.0147 0.2123±0.0067
MLP 0.0101±0.0012 0.0102±0.0020 0.0098±0.0011 0.0101±0.0004 0.0097±0.0021 0.0091±0.0012
RF 0.0252±0.0019 0.0238±0.0017 0.0243±0.0016 0.1707±0.0114 0.1623±0.0103 0.1613±0.0099

F
E
S4

DT 0.0338±0.0022 0.0322±0.0030 0.0338±0.0036 0.2155±0.0183 0.2041±0.0209 0.2147±0.0127
KNN 0.0292±0.0018 0.0275±0.0024 0.0291±0.0008 0.1917±0.0118 0.1844±0.0108 0.1904±0.0072
MLP 0.0096±0.0012 0.0088±0.0006 0.0099±0.0012 0.0971±0.0011 0.0817±0.0129 0.0905±0.0032
RF 0.0240±0.0010 0.0224±0.0005 0.0238±0.0006 0.1610±0.0074 0.1524±0.0080 0.1575±0.0064

F
E
S5

DT 0.0331±0.0023 0.0336±0.0026 0.0333±0.0021 0.2165±0.0089 0.2214±0.0075 0.2089±0.0054
KNN 0.0303±0.0041 0.0300±0.0033 0.0283±0.0024 0.2038±0.0141 0.2049±0.0143 0.1871±0.0154
MLP 0.0103±0.0012 0.0101±0.0012 0.0104±0.0020 0.0102±0.0016 0.0103±0.0012 0.0102±0.0012
RF 0.0253±0.0017 0.0236±0.0015 0.0245±0.0013 0.1715±0.0116 0.1629±0.0114 0.1594±0.0088

F
E
S6

DT 0.0345±0.0036 0.0352±0.0045 0.0316±0.0014 0.2177±0.0075 0.2193±0.0182 0.2042±0.0160
KNN 0.0335±0.0055 0.0362±0.0053 0.0345±0.0038 0.2255±0.0257 0.2509±0.0301 0.2326±0.0315
MLP 0.0087±0.0020 0.0092±0.0006 0.0084±0.0019 0.0741±0.0150 0.0856±0.0049 0.0764±0.0158
RF 0.0245±0.0013 0.0234±0.0016 0.0234±0.0010 0.1624±0.0050 0.1586±0.0107 0.1581±0.0129

factors associated with the development of CVD in T1D pa-
tients. Subsequently, we employed two post-hoc interpretabil-
ity methods to identify the most relevant features that impact
in the predictions of ML models.

Figure 4 shows the features selected by the wrapper FS
methods (PI and PSO), indicating the frequency of selection
of each feature (number of times that features were selected)
for five train partitions. The x-axis and y-axis represent the
ML model and feature name, respectively. As five partitions
were considered, the maximum number of votes could last
up to five. We selected only wrapper methods to analyze
how the selection of ML models affects the selected features
and to measure the stability and robustness of the selection.
A consensus on the features selected using different parti-
tions and ML models increase the reliability of the predic-
tive results. By analyzing the features selected in FES3 (see
Figure 4 (a-c)), we can observe that both age and Hba1c
were chosen in all cases (unanimity voting), considering data
augmentation strategies (over-per and over-level), and data
without oversampling (WO). Normoalbuminuria was the fea-
ture that received the third-most votes, reaching five votes by
all MLmodels trained with data with over-per and over-level,
whereas for data WO, the votes were five (MLP and RF) and
four (DT and KNN). Regarding the features selected by the
PSO (FES4) (see Figure 4 (d-f)), the most frequently selected
were age, Hba1c, normoalbuminuria, sex, and smoking. No-
tably, the best predictive results were achieved using the
features selected by PSO, which may be due to the variability
in the selection of features for different partitions. Note also
that age, Hba1c and normoalbuminuria were the features with
the most votes, followed by sex and smoking. There was a
significant differencewith PI, where fewer voteswere in favor

of sex and smoking features.
To distinguish the impact of features on the CVD risk

prediction and determine potential risk factors, post-hoc in-
terpretability methods SHAP and ALE were used. Figure 5
presents the SHAP summary plot that shows the SHAP mean
values obtained over five partitions and using FES4. In this
plot, features are sorted in the y-axis in decreasing order of
importance for the predictive task and the x-axis represents
the SHAP mean values. As shown, age presented the highest
SHAP values, standing out above the rest of the features for
all the models (DT, KNN, MLP and RF). The second and
third features with the highest SHAP values were Hba1c and
normoalbuminuria, respectively. These findings were also
supported by the previous analysis, where age, Hba1c and
normoalbuminuria were the features most frequently selected
by FS methods (see Figure 4).
The results obtained using SHAPwere also validated using

ALE. Figure 6 shows the ALE plots associated with the
features of FES4 and using the MLP model. The ALE plots
for MLP are shown because this model achieved the highest
predictive performance (the best MAE andMRAE in Table 1.
For continuous features (age, DM duration, EGFR, Hba1c,
LDL, SBP), ALE shows the effect of the feature values (x-
axis) on the predicted outcome (y-axis). The confidence in-
terval (CI) of the estimated effect on predictions is depicted
in gray. For binary variables (exercise, macroalbuminuria,
microalbuminuria, normoalbuminuria, sex, and smoking), a
bar plot with a line representing the estimated effects and error
bars showing the CI are depicted. The number of patients for
each feature value is depicted in violet, and the difference
in the impact on predictions is represented by a dashed line
connecting the average impact of each feature value. Figure 6

8 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3412789

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



D. Chushig-Muzo et al.: Preparation of Papers for IEEE Access

0.0 0.2 0.4 0.6 0.8 1.0
CVD risk by ST1RE

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 C
VD

 ri
sk

(a)

0.0 0.2 0.4 0.6 0.8 1.0
CVD risk by ST1RE

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 C
VD

 ri
sk

(b)

0.0 0.2 0.4 0.6 0.8 1.0
CVD risk by ST1RE

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 C
VD

 ri
sk

(c)

0.0 0.2 0.4 0.6 0.8 1.0
CVD risk by ST1RE

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 C
VD

 ri
sk

(d)

0.0 0.2 0.4 0.6 0.8 1.0
CVD risk by ST1RE

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 C
VD

 ri
sk

(e)

0.0 0.2 0.4 0.6 0.8 1.0
CVD risk by ST1RE

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 C
VD

 ri
sk

(f)

0.0 0.2 0.4 0.6 0.8 1.0
CVD risk by ST1RE

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 C
VD

 ri
sk

(g)

0.0 0.2 0.4 0.6 0.8 1.0
CVD risk by ST1RE

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 C
VD

 ri
sk

(h)

FIGURE 3: Scatter plots that compare the 10-year CVD risk provided by ST1RE (x-axis) and the estimated CVD risk (y-axis)
by ML-based models, considering: (a-d) FES1; and (e-h) FES4 using over-per and MLP as predictive model since it provided
the best results in MAE and MRAE (see Table 1. First column (DT), second column (KNN), third column (MLP) and fourth
column (RF).

shows that age has a monotonically increasing effect on the
CVD risk. As expected, older patients were at higher risk
of developing CVD. After age, Hba1c had a strong effect
on the predictions following a growing curve. Note that the
impact of presenting age was approximately four-fold higher
than Hba1c. SBP and LDL also showed ascending curves,
where greater values implied higher CVD risk. Note that SBP,
LDL, and DM duration had less impact on the predictions
(see the range on the left of the plots), with a maximum
effect of prediction between [0.02, 0.05]. Normoalbuminuria
had a high effect on prediction (0.1), indicating that this type
of albuminuria is key for CVD risk prediction, and in line
with the results of SHAP feature importance and selected
features by FS methods. Macroalbuminuria presented a low
effect on prediction. Regarding demographic and lifestyle
features (sex, exercise, and smoking), both exercise and sex
had a moderate effect on predictions (with a maximum effect
estimation of 0.02).

V. DISCUSSION
In this work, we analyzed the effectiveness of ML models
for predicting 10-year CVD risk in T1D individuals. First,
we evaluated the predictive performance of several ML mod-
els, specifically DT, KNN, MLP, and RF. Subsequently, sev-
eral filter and wrapper FS techniques were used to identify
the features most relevant in CVD risk prediction, with the
aim of extracting relevant risk factors and improving pre-

dictive performance. We also evaluated two oversampling
strategies (over-per and over-level) and using CTGAN to
create synthetic samples and improve subsequent predictive
tasks. The best predictive results were achieved using the
MLP model, employing over-per and the features selected by
PSO, obtaining a MAE of 0.0088±0.0006 and a MRAE of
0.0817±0.0129.

The post-hoc interpretability methods SHAP and ALE
were used to gain interpretability in the trained ML models.
By analyzing the results of the wrapper FS techniques and
SHAP values, we obtained several valuable insights. Age,
Hba1c and normoalbuminuria were mostly selected by the
wrapper FS methods (see Figure 4) as the most significant
features involved in the prediction of CVD risk. These fea-
tures have been extensively studied as relevant risk factors
for CVD development in clinical studies [78], [79]. Previous
research has identified that CVD risk increases with aging,
with age being the most important non-modifiable risk factor
for the development of CVDs [6]. Regarding Hba1c, several
clinical studies [7], [80] have recognized that a high HbA1c
level is associated with increased CVD risk. HbA1c provides
a measure of average glucose levels over time, reflecting the
average plasma glucose level over the previous 8–12 weeks.
Despite its benefits, it only provides an approximate measure
of glucose control and does not consider short-term glycemic
variability, which can indicate its lower impact on the 10-
year CVD risk in this study. Although the effect of Hba1c
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FIGURE 4: Heatmaps that indicate the frequency of selection of features by wrapper FS methods and considering: (a-c) FES3
(PI); and (d-f) FES4 (PSO). We show the selected features considering data WO (left panels), and using the oversampling
strategies: over-level (middle panels) and over-per (right panels).

on CVD prediction is lower than that of age, when comparing
the corresponding ALE plot (see Figure 6), it can be observed
that higher values of Hba1c increase CVD risk.

Several clinical studies have reported that elevated albumin
levels can be associated with the onset of several CVDs,
such as ischemic heart disease, heart failure, atrial fibrillation,
and stroke [81], [82]. In contrast to normoalbuminuria, the
relevance of macroalbuminuria and microalbuminuria was
significantly lower in all ML models. In the case of SBP and
LDL (see Figure 6), models identified a positive relationship
with the output, but the magnitude of the effect on prediction
was low compared to age or Hba1c. Regarding demographic
and lifestyle features, both physical exercise and smoking
had a slight impact on model predictions. Several clinical
studies have examined behavioral risk factors associated with
CVD, the most important being tobacco use followed by
physical activity, which are widely recognized as risk factors

for different chronic diseases [83], [84]. As stated, our study
used a cohort of patients diagnosed with T1D and lifestyle
features (e.g., smoking, exercise) have been less associated
with CVDs.

VI. CONCLUSION

In this study, we analyzed the performance of several ML-
based models for predicting the 10-year CVD risk in older
adults with T1D. To improve the performance of these mod-
els, we combined filter and wrapper FS methods and tabular
data augmentation with the GAN-based model, CTGAN.
CTGAN was effective in creating synthetic data for mixed-
type data and helped to improve the results of CVD risk
prediction. Our methodology, which leverages the advantages
of FS methods and data augmentation approaches, provided
significant predictive results for identifying CVD risk, with
the best figures of merit achieved using MLP and over-per
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FIGURE 5: SHAP mean values (mean and standard devia-
tion) obtained over the 5 partitions considering features of
FES4.

with a MAE and MRAE of 0.0088 and 0.0817, respectively.
Our work has also shown that FS methods and post-hoc
interpretabilitymethods are capable of identifying risk factors
involved in the development of CVD risk, highlighting the
importance of non-modifiable factors such as age, Hba1c
and albuminuria over 300 mg/g (normoalbuminuria). Among
modifiable risk factors, the physical activity was recognized
as one of the most important. This study highlights the signif-
icance ofML in the clinical setting, particularly for predicting
CVD risk in T1D individuals, supporting the creation of au-
tomated prediction systems and identification of disease risk
factors. ML models are promising for CVD risk assessment
and support the identification of high-risk individuals and
prevention of the onset of acute clinical events.
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